Regulation 2023 Program Structure

Diploma in ECG Technology

Program Outcomes (PO's)

POs are statements that describe what students are expected to know and be able to do upon graduating from the program. These relate to the skills, knowledge, analytical ability attitude, and behavior that students acquire through the program.

The POs essentially indicate what the students can do from subject-wise knowledge acquired by them during the program. As such, POs define the professional profile of an engineering diploma graduate.

NBA has defined the following seven POs for an Engineering diploma graduate:

PO1: Basic and Discipline-specific knowledge: Apply knowledge of basic science, mathematics and engineering fundamentals and an engineering specialization to solve the engineering and medical problems.

PO2: Problem analysis: Identify and analyse well-defined engineering problems using codified standard methods.

PO3: Design/ development of solutions: Design solutions for well-defined technical problems and assist with the design of systems components or processes to meet specified needs for medical purposes.

PO4: Engineering Tools, Experimentation, and Testing: Apply modern engineering tools and appropriate technique to conduct standard tests and measurements.

PO5: Engineering practices for society, sustainability and environment: Apply appropriate technology in the context of society, sustainability, environment and ethical practices.

PO6: Project Management: Use engineering management principles individually, as a team member or as a leader to manage projects and effectively communicate about well-defined engineering activities.

PO7: Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Credit Distribution

Semester	No of Courses	Periods	Credits
Semester I	8	640	20
Semester II	8	625	20
Semester III	8	640	21
Semester IV	7	625	19
Semester V	8	640	22
Semester VI	3	685	18
	Total		120

Semester III

#	Course Category	Course Type	Course Code	Course Title	L-T-P	Period	Credit	End Exam
1	Program Core	Theory	1146233110	Human Physiology	3-0-0	45	3	Theory
2	Program Core	Theory	1030233210	Electrical Circuit Theory ^{\$\$\$}	3-0-0	45	3	Theory
3	Program Core	Practical	1146233320	Human Physiology Practical	0-0-4	60	2	Practical
4	Program Core	Practical	1040233420	Digital Electronics Practical***	0-0-4	60	2	Practical
5	Program Core	Practicum	1146233540	Electronic circuits	2-0-4	90	4	Practical
6	Engineering Science	Practicum	1146233640	Sensor and Signal Conditioning	2-0-4	90	4	Practical
7	Open Elective	Advanced Skill Certification	1146233760	Advanced Skills Certification - 3	1-0-2	45	2	NA
8	Humanities & Social Science	Integrated Learning Experience	1146233880	Growth Lab	0-0-2	30	1	NA
9	Audit Course	Integrated Learning Experience	1146233881	Induction Program - II	-	16	0	-
10	Audit Course	Integrated Learning Experience	1146233882	I&E/ Club Activity/ Community Initiatives	-	16	0	-
11	Audit Course	Integrated Learning Experience	1146233883	Shop floor Immersion	-	6	0	-
12	Audit Course	Integrated Learning Experience	1146233884	Student-Led Initiative	-	24	0	-
13	Audit Course	Integrated Learning Experience	1146233885	Emerging Technology Seminars	-	8	0	-
14	Audit CourseIntegrated Learning Experience1146233886Health & Wellness-				30	0	-	
	Test & Revisions						0	-
			Library Hou	ırs		15	0	-
			Total			565	21	-

*** Common with ECE Department ; \$\$\$ Common with EEE Department

#	Course Category	Course Type	Course Code	Course Title	L-T-P	Period	Credit	End Exam
1	Program Core	Theory	1146234110	Bio-Materials and Artificial Organs	3-0-0	45	3	Theory
2	Program Core	Theory	1146234210	Operational Amplifier and Linear Integrated Circuits	3-0-0	45	3	Theory
3	Program Core	Practicum	1146234340	Microbiology	1-0-4	75	3	Practical
4	Engineering Science	Practicum	1146234440	Microcontroller and its applications	1-0-4	75	3	Practical
5	Program Core	Practicum	1146234540	Basics of Signals and Systems	1-0-4	75	3	Practical
6	Program Core	Project/ Internship	1146234652	Industrial Training [Summer Vacation]	0-0-4	60	2	Project
7	Open Elective	Advanced Skill Certification	1146234760	Advanced Skills Certification - 3	1-0-2	45	2	NA
8	Audit Course	Integrated Learning Experience	1146234882	I&E / Club Activity / Community Initiatives	-	30	0	-
9	Audit Course	Integrated Learning Experience	1146234883	Shop Floor Immersion	-	8	0	-
10	Audit Course	Integrated Learning Experience	1146234884	Student Led Initiative	-	24	0	-
11	Audit Course	Integrated Learning Experience	1146234885	Emerging technology seminars	-	8	0	-
12	Audit Course	Integrated Learning Experience	1146234886	Health & Wellness	-	30	0	-
13	Audit Course	Integrated Learning Experience	1146234887	Special Interest groups (Placement training)	-	30	0	-
	Test & Revisions					60	0	-
		Library	Hours		-	15	0	-
		То	tal		-	550	19	-

Semester IV

#	Course Category	Course Type	Course Code	Course Title	L-T- P	Perio d	Credi t	End Exam
1	Program Core	Theory	1146235110	Medical Assist Device	4-0-0	60	4	Theory
2	Program Elective	Theory		Elective - 1	3-0-0	45	3	Theory
3	Program Core	Practicum	1146235340	Diagnostic and Therapeutic Equipments	1-0-4	75	3	Practical
4	Program Elective	Practicum		Elective - 2	1-0-4	75	3	Practical
5	Program Core	Practicum	1146235540	Clinical Cardiology	1-0-4	75	3	Practical
6	Humanities & Social Science	Practicum	1146235652	Innovation & Startup	1-0-2	45	2	Project
7	Project/ Internship	Project/ Internship	1146235751	Hospital Training	0-0-4	60	2	Project
8	Open Elective	Advanced Skill Certification	1146235860	Advanced Skills Certification - 5	1-0-2	45	2	NA
9	Audit Course	Integrated Learning Experience	1146235981	Induction program IN	-	16	0	-
10	Audit Course	Integrated Learning Experience	N 46235984	Student-Led Initiative	-	24	0	-
11	Audit Course	Integrated Learning Experience	1146235986	Health & Wellness	-	30	0	-
12	Audit Course	Integrated Learning Experience	1146235987	Special Interest Groups (Placement Training)	-	30	0	-
		Test &	Revision		-	60	0	-
		Т	otal		-	580	22	-

Semester V

Semester VI

#	Course Category	Course Type	Course Code	Course Title	L-T-P	Perio d	Credi t	End Semeste rExam
1	Program Elective	Theory		Elective-3(Pathway)	3-0-0	45	3	Theory
2	Program Elective	Practicum		Elective-4 (Specialisation)	2-0-2	60	3	Theory
3	Project/Internship	Project/Internship	1146236352/ 1146236351/ 1146236353	In-house Project / Internship/ Fellowship	-	540	12	Project
				Test & Revisions		40	-	-
				Total		645	18	

Note:

1. For all semesters, the type of End Semester examination for practicum subjects is based on the higher credits towards the theory or practical component of the respective course.

2. Some of the audit courses are non-credited but compulsory courses that are a part of the program initiative and the implementation process has to be recorded.

Elective 1

#	Course Category	Course Type	Course Code	Course Title
1	Program Elective	Theory	1146235211	Medical Coding
2	Program Elective	Theory	1146235212	Medical Informatics
3	Program Elective	Theory	1146235213	Assist Devices
4	Program Elective	Theory	1146235214	Basic of Cardiac Technology and ECG
5	Program Elective	Theory	1146235215	Basics of Telehealth Technology
6	Program Elective	Theory	1146235216	Basics of Biomechanics

Elective 2

#	Course Category	Course Type	Course Code	Course Title
1	Program Elective	Practicum	1146235441	Fiber Optics and Laser in Cardiology
2	Program Elective	Practicum	1146235442	Installation, Servicing and troubleshooting of ECG Machine
3	Program Elective	Practicum	1146235443	Clinical Pathology
4	Program Elective	Practicum	1146235444	Medical Imaging Techniques
5	Program Elective	Practicum	1146235445	Basics of VLSI Design
6	Program Elective	Practicum	1146235446	Fundamentals of Embedded Systems
lectiv	ve 3 (Pathway)			

Elective 3 (Pathway)

#	Course Category	Course Type	Course Type	Course Title
1	Program Elective Higher Education	Theory	XXXX236111	Advanced Engineering Mathematics***
2	Program Elective Entrepreneurship	Theory	XXXX236112	Entrepreneurship***
3	Program Elective Technocrats	Theory	1146236113	Hospital Management
4	Program Elective Technocrats	Theory	XXXX236114	Finance Fundamentals***
5	Program Elective Technologists	Theory	1146236115	IOT in Health care
6	Program Elective Technologists	Theory	1146236116	Medical Instrumentation

*** Common with ECE Department

Elective 4 (Specialisation)

#	Course Category	Course Type	Course Type	Course Title
1	Program Elective	Practicum	1146236231	Interpretation of ECG
2	Program Elective	Practicum	1146236232	Radiology
3	Program Elective	Practicum	1146236233	Medical Device Design
4	Program Elective	Practicum	1146236234	Basics of Bio-Chemistry
5	Program Elective	Practicum	1146236235	Blood Banking Techniques
6	Program Elective	Practicum	1146236236	Cardiovascular Investigation

Introduction

Physiology is the study of the characteristics and mechanisms of the human body. It is a subsection of biology, covering a range of topics that include organs, anatomy, and biological compounds, among others. It incorporates functions and processes that create life which split into many disciplines covering topics as exercise & evolution about the internal workings of organisms and their interaction through recent medical devices. In this course students will learn about cell structure, cardiovascular, central nervous system, respiratory system, digestive and reproductive system and understand about the structural and functional process of human physiology.

Course Objectives

The objective of this course is to enable the student to

- 1. To integrate the individual functions of all the cells and tissues and organs into functional whole, the human body.
- 2. To Emphasizes on the cardiovascular, respiratory and nervous system and their interrelatedness.
- 3. To understand the functional anatomy of digestive and reproductive organs

Course Outcomes

On successful completion of this course, the student will be able to

- CO1: Identify and explain basic elements of human cell structure
- CO2: Describe the structure, function of cardiovascular system
- CO3: Describe the structure, function of central nervous system

CO4: Discuss the structure of respiratory system

CO5: Describe the physiological process of digestive & reproductive system

Pre-requisites

Fundamentals of biology, structural & functional human parts

CO/PO Mapping

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	3	3	3	3	-	-	-
CO2	3	3	3	3		-	-
CO3	3	3	3	3	-	-	-
CO4	3	3	3	3	-		-
CO5	3	3	3	3		-	-

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation

Instructional Strategy:

- Engage and Motivate: Instructors should actively engage students to boost their learning Confidence.
- Real-World Relevance: Incorporate relatable, real-life examples and engineering applications to help students understand and appreciate course concepts.
- Interactive Learning: Utilize demonstrations and plan interactive student activities for an engaging learning experience.
- Application-Based Learning: Employ a theory-demonstrate-practice-activity strategy throughout the course to ensure outcome-driven learning and employability.
- Simulation and Real-World Practice: Conduct demonstrations and hands-on activities in a simulated environment, transitioning to real-world scenarios when possible.
- Encourage Critical Analysis: Foster an environment where students can honestly assess experiment outcomes and analyze potential sources of error in case of discrepancies.

Assessment Methodology:

	(Continuous Asse	ssment (40 marks	3)	End Semester
	CA1	CA2	CA3	CA4	(60 Marks)
Model	Written Unit I & II (at the end of 6 th week)	Written Unit III & IV (at the end of 12 th week)	Written Model Exam Units I to V	Quiz/MCQ/ Activity/ Assignment	Written Examination
Duration	2 hours	2 hours	3 hours	2 hours	3 hours
Exam Marks	60	60	100	100	100
Converted to	20	20	10	10	60
Marks	2	20	2	0	60

Note:

- CA1 and CA2 Assessment test should be conducted as per the question pattern. Best of one will be considered for 20 Marks.
- CA3 Model examination should be conducted as per the question pattern.
- CA4 Online quiz examination (MCQ) should be conducted covering the complete syllabus.

Question pattern:

CA1 & CA2 Assessment						
Part	Description	Marks				
А	16 Questions to be answered out of 20 Questions	16Q X 2 = 32 Marks(Each				
		question carries 2 marks)				
В	4 Questions to be answered out of 6 Questions	4QX 7 = 28 Marks (Each				
		question carries 7 Marks)				
	CA3 Assessment					
Part	Description	Marks				
А	15 Questions to be answered out of 20 Questions	15Q X 2 = 30 Marks(Each				
		question carries 2 marks)				
В	Answer all 5 questions, choosing any 2 sub-	(5Q X 14 =70 Marks)(7+7)				
	divisions out of 3 from each question under					
	Part –B.					

1146233110

HUMAN PHYSIOLOGY

L	Т	Р	С
3	0	0	3

Theory

1146233110 Theory		HUMAN PHYSIOLOGY	L	Т	Р	C
			3	0	0	3
Unit I	CELL S	TRUCTURE				
Theory Structure of electrical p in cell cycl	of Cell – st roperties of e, and con	tructure- Cell Membrane- function and regulation of intrace of membrane- Action Potential -Mitosis and meiosis, their r trol of cell cycle- Cell Division- Types of Specialized tissue	ellula egula s – Fr	r trans tion - inctioi	sport- steps ns	9
Unit II	CARDI	OVASCULAR SYSTEMS				
Theory Cardiovascular: Components of Blood and functions Blood Groups and importance – Structure of Heart – Conducting System of Heart – Properties of Cardiac Muscle - Cardiac Cycle - Heart Beat regulation of cardiac function; cardiac output – regulation in normal and abnormal conditions – Types of Blood vessel – Regulation of Heart rate and Blood pressure						9
Unit III	CENTR	AL NERVOUS SYSTEM				
Theory Nervous: (Mechanism Pathways systems an	Cells of N ns of Nerv of Spines d its funct	lervous systems – Types of Neuron and Synapses – Neuve impulse – Brain : Parts of Brain – Reflex - Spinal Co – Reflex Mechanism – Classification of Nerves - Auto ions Cerebro - Spinal Fluid - Autonomic Nervous System	ırotra ord – onomi	nsmitt Tract c Ner	ters - t and trous	9
Unit IV	RESPIR	ATORY SYSTEM				
Theory Respiratory: Parts of Respiratory Systems – Types of respiration - Mechanisms of Breathing – Regulation of Respiration cells of airways and alveoli – ciliated cells, cells for mucous production-origin of respiratory rhythm, central and peripheral chemoreceptors-respiratory						9
Unit V	DIGEST	TIVE & REPRODUCTIVE SYSTEM				
Introduction to digestive system - Composition and functions of digestive juices -Physiological anatomy of stomach, pancreas, liver and gall bladder, small intestine, large intestine. Male reproductive system - testis and its hormones, seminal vesicles, prostate gland, semen - Introduction to female reproductive system- Menstrual cycle- Ovulation						9
TOTAL HOURS						45

Suggested List of Students Activity

- 1. Assignments.
- 2. Hospital Field Visit
- 3. Group Discussion with Doctor's and Students.

Reference

- 1. Guyton and Hall Textbook of Medical Physiology 11th Edition
- 2. Animal Physiology. Third Edition. By Richard W. Hill, Gordon A. Wyse, and Margaret Anderson

1146233110	HUMAN PHYSIOLOGY	L	Т	Р	С
Theory		3	0	0	3

- 3. Physiology 6th edition LINDA S. COSTANZO, Ph.D.
- 4. Berne & Levy Physiology 7th Edition

Web-based/Online Resources

- 1. https://learn.careers360.com/biology/human-physiology-chapter/
- 2. https://www.coursera.org/learn/physiology/

1030233210	ELECTRICAL CIRCUIT THEORY	L	Т	Р	С
THEORY		3	0	0	3

Introduction:

Electrical circuits are very important to all engineering disciplines either because there are electric circuits in those disciplines or because the underlying physical ideas are easily translated to other disciplines. The two most important laws in circuit analysis are the two Kirchhoff's Laws which are just another form of the conservation laws of physics. These laws are ALWAYS valid in every situation. Circuit theory is the cornerstone of electrical engineering, providing the rules and methods for analyzing electrical circuits. Electric circuit theory is one of the most vital aspects of electrical engineering.

Course Objectives:

The objective of this course is to enable the student to

- Maintain electrical systems applying AC and DC circuit fundamentals
- Impart knowledge on solving circuit equations using network theorems
- Learn the concept of single phase AC Series Circuits for different load condition.
- Learn the phenomenon of single phase AC Parallel circuit and resonance circuits.
- Introduce Phase diagrams and analysis of three phase circuit.

Course Outcomes:

On successful completion of this course, the student will be able to

- CO1 : Apply principles of circuit analysis to solve electric circuits.
- CO2 : Apply network theorems to solve electric circuits.
- CO3 : Solve the problems related to single phase A.C Series circuits.
- CO4 : Solve the problems related to single phase A.C Parallel circuits and Resonance circuits.
- CO5 : Solve the problems related to three phase circuits.

Pre-requisites: Knowledge of Mathematics.

1030233210	ELECTRICAL CIRCUIT THEORY	L	Т	Р	С
THEORY		3	0	0	3

CO/PO Mapping:

CO / PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	3	2	1	-	-	-	3
CO2	3	2	3	-	-	-	3
CO3	3	3	3	-	-		3
CO4	3	3	2	-	-	-	3
CO5	2	2	2	-	-	-	1

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation

Instructional Strategy:

- Engage and Motivate: Instructors should actively engage students to boost their learning confidence.
- Real-World Relevance: Incorporate relatable, real-life examples and engineering applications to help students understand and appreciate course concepts.
- Interactive Learning: Utilize demonstrations and plan interactive student activities for an engaging learning experience.
- Application-Based Learning: Employ a theory-demonstrate-practice-activity strategy throughout the course to ensure outcome-driven learning and employability.
- Encourage Critical Analysis: Foster an environment where students can honestly assess experiment outcomes and analyze potential sources of error in case of discrepancies.

1030233210	FI ECTRICAL CIRCUIT THEORY	L	Т	Р	С
THEORY		3	0	0	3

Assessment Methodology:

	(End Semester		
	CA1	CA2	CA3	CA4	Examination (60 Marks)
Mode	Written	Written	Quiz/	Model	Written
	Test 1	Test 2	MCQ	Examination	Examination
Portion	Unit I & II	Unit III & IV	All Units	All Units	All Units
Duration	2 Hours	2 Hours	1 Hour	3 Hours	3 Hours
Exam Marks	60	60	40	100	100
Converted to	20	20	10	10	60
Marks					
Internal Marks			40		60

Note:

- CA1 and CA2 Assessment test should be conducted. Best of one will be considered for the internal assessment of 20 Marks.
- CA3 Online quiz examination (MCQ) should be conducted covering the complete syllabus. The marks should be converted to 10 marks for the internal assessment.
- CA4 Model examination should be conducted as per the end semester question pattern. The marks should be converted to 10 marks for the internal assessment.

DIRECTORATE OF TECHNICAL EDUCATION, CHENNAI – 600 025 2023 REGULATION

1030233210	ELECTRICAL CIRCUIT THEORY	L	Т	Р	C
THEORY	ELECTRICAL CIRCUIT THEORY	3	0	0	3

Theory Portion	n :	
UNIT I B	BASIC CIRCUITS ANALYSIS	Period
Resistive elem	nents - Ohm's Law - Kirchhoff's laws - Resistors in series and parallel circuits	
- Source trans	sformation - Star/delta and delta/star transformation - Mesh Analysis - Node	0
Analysis - Pro	oblems on all the above	9
topics.		
UNIT II N	NETWORK THEOREMS	Period
Superposition	Theorem - Thevenin's Theorem - Norton's Theorem -	0
Maximum Pov	wer Transfer Theorem - Problems on all the above topics.	9
UNIT III S	SINGLE PHASE A.C SERIES CIRCUITS	Period
Sinusoidal vol	ltage and current – Instantaneous, peak, average and effective values – Form	
Factor - Peak	factor - Pure resistive, inductive and capacitive circuits – RL, RC, and RLC	
series circuits	s – Impedance – Phase angle – Phasor diagram – Power and Power factor –	Q
Power triangle	e – Apparent power – Active Power - Reactive power - Problems using RL,	
RC, and RLC	series	
circuits.		
UNIT IV S	SINGLE PHASE A.C PARALLEL CIRCUITS & RESONANCE	Period
J Notations –	Rectangular and polar coordinates - Parallel circuits (two branches only) –	
Conductance -	- Susceptance – Admittance - Problems using two branch parallel circuits.	
Series Resona	ance: Effects of varying inductance and capacitance in series RLC circuit –	
Selectivity -	'Q' factor - Resonance Frequency - Bandwidth - Half power frequencies-	0
Problems on a	all the above topics.	9
Parallel Reson	nance : Two branch parallel circuits, Q Factor - Resonance	
Frequency – E	Band width – problems on all the above topics.	

1030233210	ELECTRICAL CIRCUIT THEORY	L	Т	Р	С
THEORY		3	0	0	3

UNIT V	THREE PHASE CIRCUITS	Period
Significanc	e of 3 phase circuits – Star, Delta connections – Phase sequence – Balanced load	
– Relation	between voltages, currents of line and phase values in star and delta connection –	
Problems in	n balanced loads of star and delta connections - Measurement of 3 phase power	0
using two wattmeter method (Derivation and Problems) - Star and Delta connected		
unbalanced		
loads (No p	problems) – Symmetrical components (No problems).	
	TOTAL PERIODS	45

Suggested List of Students Activity:

- Prepare power point presentation on source transformation, star delta transformation, mesh and nodal analysis and give presentation in the class room.
- Select suitable components for the given circuit and prepare the same on bread board to verify the following theorems practically and theoretically: Superposition theorem, thevenin's theorem, maximum power transfer theorem and Norton theorem.
- Design different kinds of circuits that you will study in your class and assemble them using the relevant components, for example:
- Circuit to measure the value of an unknown resistance using a meter bridge
- Circuit to compare e.m.f. of two cells using a potentiometer, etc.
- Measure the voltmeter and ammeter readings for different rheostat settings and verify if the ratio of potential difference across the resistor to the current through it is constant. Modify the circuit using two resistors which may either be connected in series or in parallel.
- Compare the connecting wires used in household circuits and those used in the laboratory.

1030233210	ELECTRICAL CIRCUIT THEORY	L	Т	Р	С
THEORY		3	0	0	3

- Make a study of different battery eliminators, dc sources (cells, batteries) in laboratories.
- Assemble a household circuit comprising three bulbs, three (on/off) switches, a fuse and a power source.
- Draw a circuit diagram consisting of two light points, one fan point and one plug point.

Text and Reference Books:

- 1. Electric circuit theory by Dr. M. Arumugam & N. Prem kumar, Khanna Publishers New Delhi
- 2. A Text Book of Electrical Technology Vol-I, Theraja, BL, Theraja, A. K, S Chand & Co. Ram Nagar, New Delhi, ISBN : 9788121924405
- 3. Circuit theory, by Saliva hanan, S.; Pravin kumar, S;, Vikas Publishing House Pvt. Ltd, Noida; ISBN: 978-93259-7418-0
- 4. Networks and Systems, Asfaq Husain, Hanna Publishing House, Delhi
- 5. Networks and systems, D. Roy Choudhary, New Age International Publishers
- 6. Problems and Solutions of Electrical Circuit Analysis, R.K. Mehta & A.K. Mal, CBS Publishers
- 7. Circuit Theory by A. Chakra barti for Electronics & Electrical Engineering
- 8. Circuit Theory by A. Nagoor Kani -McGraw-Hill Education (2018)
- 9. Schaum's Outline of Electric Circuits, 7th Edition

Web-based/Online Resources:

- Circuit Theory free e book by Jackd ·published 03/12/2017 updated 31/03/2018
- Electric circuits and network by Dr. Jamuna K.and Dr. Nilanjan Tewari
- II Year diploma level book as per aicte model curriculum (based upon outcome based education as per new education policy 2020) available in AICTE website.

the

1030233210	ELECTRICAL CIRCUIT THEORY	L	Т	Р	C
THEORY		3	0	0	3

- https://ekumbh.aicte-india.org/userdiplomabook.php
- https://upload.wikimedia.org/wikipedia/commons/f/f8/Circuit_Theory.pdf
- https://www.khanacademy.org/science/electrical-engineering/ee-circuit-analysis- topic/circuitelements/v/ee-ideal-sources
- https://onlinecourses.nptel.ac.in/noc20_ee64/preview
- https://www.electrical4u.com/electrical-engineering-articles/circuit-theory/

Introduction

Human Physiology course is designed to impart a fundamental knowledge on the structure and functions of the human body. It also helps in understanding of how the entire body works, responds to changing internal and external conditions, and fulfils a function.

Course Objectives

The objective of this course is to enable the student to

• Interpret and draw inferences from experimental measures of our body.

Course Outcomes

On successful completion of this course, the student will be able to

CO1: To record the blood pressure, heart rate.

CO2: To record the pulse rate and to perform haematological test.

CO3: To explain about breathing rate and galvanic skin response.

CO4: To prepare serum and plasma from blood and to Perform urine analysis

CO5: To analysis and estimate blood glucose and to explain about cardiac disorder system

]

Pre-requisites

Fundamentals of biology, structural & functional human parts

CO/PO Mapping

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	3	3	3	3	-	-	-
CO2	3	3	3	3	-	-	-
CO3	3	3	3	3	-	-	-
CO4	3	3	3	3	-	-	-
CO5	3	3	3	3	-	-	-

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation

DIRECTORATE OF TECHNICAL EDUCATION, CHENNAI – 600 025 2023 REGULATION

Practical

Instructional Strategy:

- Engage and Motivate: Instructors should actively engage students to boost their learning Confidence.
- Real-World Relevance: Incorporate relatable, real-life examples and engineering applications to help students understand and appreciate course concepts.
- Interactive Learning: Utilize demonstrations and plan interactive student activities for an engaging learning experience.
- Application-Based Learning: Employ a theory-demonstrate-practice-activity strategy throughout the course to ensure outcome-driven learning and employability.
- Simulation and Real-World Practice: Conduct demonstrations and hands-on activities in a simulated environment, transitioning to real-world scenarios when possible.
- Encourage Critical Analysis: Foster an environment where students can honestly assess experiment outcomes and analyze potential sources of error in case of discrepancies.

	(Continuous Assessment (40 marks)					
	CA1	CA2	CA3	CA4	(60 marks)		
Mode	Practical Test (Expt 1 to 5)	Practical Test (Expt 6 to10)	Model Practical Exam.	Record of Work Done	Practical Examination		
Duration	2	2	3	Regularly	3 hours		
Exam Marks	60	60	100	20	100		
Converted to	15	15	15	10	60		
Marks	1	5	15	10	60		
Internal Marks		4	0		60		

Assessment Methodology

Note:

• CA1 and CA2: It should be conducted as per the end semester question pattern for 60 Marks. The 60 marks awarded will be converted to 15 Marks. The best one will be considered for the Internal Assessment of **15 Marks**.

DIRECTORATE OF TECHNICAL EDUCATION, CHENNAI – 600 025 2023 REGULATION

- CA 3: After completion of all the exercises, model examination should be conducted as per end semester question pattern. The marks awarded should be converted to **15 Marks** for the internal assessment.
- CA 4: Record of work done should be maintained and the same have to be evaluated after completion of each practical exercise before the commencement of the next exercise for **20** Marks. The marks awarded should be converted to **10 Marks** for the internal assessment.

Allocation of Marks for Model Examination and End Semester Examination

Part	Description	Marks
А	Circuit Diagram / Experimental set up	25
В	Testing/Experimenting	40
C	Tables/Graph	20
D	Observing Result	10
Е	Viva-voce	5
	100	

1146233320	HUMAN PHYSIOLOGY PRACTICAL	L	Т	Р	С
Practical			0	4	2
Ex. No	Name of the Exercise	Hours			
1	To determine the heart rate in sitting and standing posture			6	
2	To determine blood pressure before and after exercise			6	
3	To determine the pulse rate			6	
4	To determine Hb before and after exercise	6			

1146233320

Practical

5	Study of breathing rate with the change of postures.	6
6	Study of Galvanic skin response (GSR).	6
7	To Prepare serum and plasma from blood.	6
8	To Estimate of urea	6
9	Estimation of blood glucose.	6
10	To study the Cardiac disorder systems.	6
	TOTAL HOUR	60

Equipment Required:

Sl. No	Item Description	Range	Quantity Required
1.	Heart rate monitor	-	4
2.	Sphygmomanometer	-	2
3.	Hemoglobinometer	-	4
4	EDTA tubes	-	1 box
5	Urea Kit	-	2
6	Breathing exercise charts	-	As required
7.	Body Postures charts	-	As required

DIRECTORATE OF TECHNICAL EDUCATION, CHENNAI – 600 025 2023 REGULATION

Web-based/Online Resources:

- 1. https://www.gdcb.iastate.edu/laboratory-experiences-human-physiology
- 2. <u>https://physiologylab.unl.edu/human-physiology-labs-1-6</u>
- 3. <u>https://iastate.pressbooks.pub/curehumanphysiology/front-matter/introduction-to-the-human-physiology-laboratory/</u>

Practical

Introduction

Digital Electronics Practical is supportive for the students to obtain the basic knowledge of digital logic levels and its application to construct digital circuits. This course will guide the students to perform the analysis and design of various digital circuits. This will improve the practical knowledge of the students to handle real time applications and working in an efficient manner.

Course Objectives

The objective of this course is to enable the student to

- Learn the basics of digital electronics, Boolean algebra, and able to design the simple logic circuits and test/verify the functionality of the logic circuits
 - Understand the working principle of various arithmetic and combinational logic circuits
- Analyse and design about different sequential logic circuits in this lab.

Course Outcomes

On successful completion of this course, the student will be able to

CO1: Basic knowledge on logic gate implementation and get familiar with IC.

CO2: Create digital functions using Boolean Algebra and verify experimentally.

CO3: Understanding different combinational circuits and design circuits. CO4: Able to solve

problem using sequential circuit and logic design.

CO5: Understand the function of simple digital circuits under real and simulated environment.

Pre-requisites

Nil

CO/PO Mapping

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	3	3	3	3			
CO2	3	3	3	3			
CO3	3	3	3	3			
CO4	3	3	3	3			
CO5	3	3	3	3			

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation

Instructional Strategy

- Engage and Motivate: Instructors should actively engage students to boost their learning confidence.
- Real-World Relevance: Incorporate relatable, real-life examples and engineering applications to help students understand and appreciate course concepts.
- Interactive Learning: Utilize demonstrations and plan interactive student activities for an engaging learning experience.
- Application-Based Learning: Employ a theory-demonstrate-practice- activity strategy throughout the course to ensure outcome-driven learning and employability.
- Simulation and Real-World Practice: Conduct demonstrations and hands-on activities in a simulated environment, transitioning to real- world scenarios when possible.
- Encourage Critical Analysis: Foster an environment where students can honestly assess experiment outcomes and analyze potential sources of error in case of discrepancies.

	Conti	nuous Assessment	(40 marks)		End Semester Examination	
	CA1	CA2	CA3	CA4	(60 marks)	
Mode	Practical Test (Ex: 1 to 6)	Practical Test (Ex: 7 to 12)	Model Examination	Record Work	Practical Examination	
Duration		2 hours			3 hours	
Exam Marks	20	20	20	20	100	
Converted to	10	10	10	10	60	
Marks		40			60	

Assessment Methodology

1040233420	I Digital Electronics Practical	L	Т	Р	C
Practical		0	0	4	2

1040233	420	Digital Electronics Practical		Т	Р	C	
Practical			0	0	4	2	
Ex.No Name of the Exercise							
1	V ga	erification of truth table of OR, AND, NOT, NOR, NAND, Entes.	X- 0	R		4	
2	R	ealization of logic gates using NAND & NOR gates.				4	
3	V	erification of Demorgan's theorems.				4	
4	Н	alf adder, Full adder using logic gates.				4	
5	Н	alf subtractor, full subtractor using logic gates.				4	
6	Construction and verification of truth table for Decoder and Encoder.						
7	Construction and verification of truth table Multiplexer and De- multiplexer.						
8	8 Construction and verification of truth table one digit digital comparator					4	
9	9 Construction and verification of truth table for SR Latch using NAND and NOR gates					4	
10 Construction and verification of truth table for JK, D and T flip- flops.						4	
11	C	onstruct and test the performance of a 4- bit asynchronous up	cour	ter.		4	
12	C	onstruct and test the performance of a decade counter.				4	
13	C	onstruct and test the performance of Parity generator and chec	cker.			4	
14	С	onstruct and test shift register in SIPO			4		
15	C	onstruct and test shift register in PISO			4		
		Total Hours			6	0	

Note: For the Semester Examinations, there is no need to do the Simulation. It is only for the learning purpose. Students must do the experiments only using Trainer Kits and ICs.

Practical

L	Т	Р	С
0	0	4	2

Allocation of Marks

Part	Description	Marks
А	Circuit Diagram	30
В	Truth Table	20
С	Connection and Execution	35
D	Tabulation and Result	10
Е	Viva Voce	05
	100	

Equipments Required

Sl.No		Items	Quantity Required
1.	Digital Trainers		10
2.	Digital ICs		

L	Т	Р	С
2	0	4	4

Introduction

This course is intended to introduce students to the fascinating world of analog electronics. The emphasis of the course is to build intuition behind the operation of circuits. To do this, we derive circuits ground-up, from first principles. Electronic Circuits, with the simple explanation presents a single comprehensive syllabus covering all aspects of semiconductor devices and circuits with an aim to satisfy the requirements of polytechnic students and teachers. With each topic organized in a sequential manner, explanations are provided for every concept to enhance the understanding of the students.

Course Objectives

The objective of this course is to enable the student to

- 1. Introduce the concept of rectifiers and filters.
- 2. Know the types of biasing and stability factor.
- 3. Comprehend the fundamental concepts in feedback amplifier circuits.
- 4. Analyze the characteristics of RC & LC oscillators.
- 5. Understand the concept of Multivibrators and IC voltage regulators.

Course Outcomes

On successful completion of this course, the student will be able to

- CO1: Categorize the filters and rectifiers.
- CO2: Demonstrate the BJT biasing circuits.
- CO3: Explain the negative feedback concept and analyze frequency response characteristics of amplifiers.
- CO4: Construct and test the characteristics of RC/LC oscillators.
- CO5: Design regulated power supplies & multivibrators.

Pre-requisites:

Prior knowledge on basic Electronic Devices and components.

1146233540	ELECTRONIC CIRCUITS	L	Т	Р	С
Practicum	ELECTRONIC CIRCUITS	2	0	4	4

CO/PO Mapping

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	3	1	2	-	1	-	1
CO2	3	1	2	-	2	-	1
CO3	3	2	2	3	2	-	1
CO4	3	1	2	-	2	-	1
CO5	3	2	2	3	2	-	1

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation

Instructional Strategy

• Engage and Motivate: Instructors should actively engage students to boost their learning Confidence.

• **Real-World Relevance**: Incorporate relatable, real-life examples and engineering applications to help students understand and appreciate course concepts.

• **Interactive Learning**: Utilize demonstrations and plan interactive student activities for an engaging learning experience.

• Application-Based Learning: Employ a theory-demonstrate-practice-activity strategy throughout the course to ensure outcome-driven learning and employability.

• Simulation and Real-World Practice: Conduct demonstrations and hands-on activities in a simulated environment, transitioning to real-world scenarios when possible.

• Encourage Critical Analysis: Foster an environment where students can honestly assess experiment outcomes and analyze potential sources of error in case of discrepancies.

Assessment Methodology

	Continuous Assessment (40 marks)				End Semester		
	CA1	CA2	C	43	Examination (60 Marks)		
Mode	Assignment	Record Writing	Written Practical Examination Examination		Written Examination	Practical Examination	
Duration	-	-	1 Hour	2 Hours	1 Hour	2 Hours	
Exam Marks	20	10	20	80	20	80	
Converted to	10	10	20		6	0	
Marks		4	0		6	0	

Note:

• CA 3 Model Examination shall be conducted similar to End Semester Examination which comprises of 100 Marks in which 80 Marks are allocated for Practical and 20 Marks are allocated for Theory Question pattern

Allocation of Marks for End Semester Board Practical Examination and Model Practical Examination

Practical part (All Experiments)

Part	Description	Marks
А	Circuit Diagram	35
В	Procedure/Algorithm	10
С	Connections/Execution	20
D	Output/Result	10
Е	Viva voce	5
	TOTAL MARKS	80

	Model Examination /End Semester Examination				
Part	Description	Marks			
Theory	10 Questions to be answered out of 15 Questions, Each Question carries 2 Marks(10Q X 2=20 Marks)	20			
Practical	As per Allocation of marks in Practical Part	80			
	Total	100			

114623	3540		L	Т	Р	С
Practi	cum	ELECTRONIC CIRCUITS		0	4	4
Unit I	Diode and	its Application circuits				
Theory: PN Jun rectifier with filter, Zener	ction Diode two Diode Diode: Zene	e – Rectifier - Classification of Rectifiers-Half wave rectifier- s, Bridge Rectifier – Filters: Definition - Types - Capacitor filte r breakdown – Zener diode as a Voltage regulator	- Full er - In	wave ductor	6	Hrs
Practical: Experiment #1: Construct a circuit to test the forward and reverse bias characteristics of a PN Junction Silicon diode. Experiment #2: Construct a circuit to test the forward and reverse bias characteristics of a Zener diode Experiment #3: Construct a Full wave (center tapped) rectifier and test its input and output waveforms with and without Capacitor filter.					12	Hrs
Unit II	BJT AMF	LIFIERS				
Theory: Tran (Operation o of Common	sistor biasin nly, no deriv Emitter Trai	g: Need for biasing - Types- Fixed bias, Collector to base bias a vation of circuit elements and parameters)– Define: Stability factor as an Amplifier and as a switch - RC coupled amplifier circ	nd Se · - Ope uit	lf bias eration	6 H	Irs
Practical: Experiment # Experiment #	44: Construc Character ≰5: Construc	t a Common Emitter Transistor circuit and test its input and output istic curves. It and test the frequency response characteristics of RC coupled and	t plifie	r	12	Hrs
Unit III	FEEDBA	CK AMPLIFIERS				

1146233540	ELECTDONIC CIDCUITS	L	Т	Р	С		
Practicum	ELECTRONIC CIRCUITS	2	0	4	4		
Theory: Block diagram – Loop gain – Gain with feedback – Effects of negative feedback –Sensitivity and desensitivity of gain – Cut-off frequencies – Distortion – Noise – Input impedance and output impedance with feedback – Four types of negative feedback connections.							
Practical: Experiment #6: Construct a Common emitter amplifier circuit and test its frequency response characteristics with and without Current series feedback introduced in it using any electronic simulation software like Multisim/Tina/Pspice. Experiment #7: Shunt feedback amplifiers using any Electronic simulation software like Multisim/Tina/Pspice.							
Unit IV OSCILLATORS							
Theory: Classification – Barhausen criterion – Mechanism for start of oscillation and stabilization of amplitude – General form of an oscillator – Analysis of LC oscillators – Hartley – Colpitts - RC oscillators – Phase Shift - Frequency response of RC and LC oscillators					e 6	Hrs	
Practical: Experiment #8: Construct RC Phase shift oscillator circuit using NPN transistor BC107 and Observe the output waveform in CRO Experiment #9: construct and test the characteristics OF Hartley oscillator					12	Hrs	
Unit V MUI	TIVIBRATORS & REGULATORS						
Theory: Multivibrators: Definition, Types, Astable and Monostable Multivibrator, Schmitt trigger using Transistors - Need for voltage regulator, IC Voltage regulator-series and shunt voltage regulator, Comparison Design of power supply					r :, 6	Hrs	
Practical: Experiment #10: Design multivibrators (Astable, Monostable) using any Electronic simulation Software like Multisim/Tina/Pspice. Experiment #11: Design Schmitt trigger using Transistor using any Electronic simulation software like Multisim/Tina/Pspice. Experiment #12: Test the performance of IC Voltage Regulator Power Supplies using IC 7805, IC 7912.						Hrs	
TOTAL HOURS 9							
Suggested List of Students Activity Other than classroom learning, following are the suggested student related co-curricular activitie							

which can be undertaken to accelerate the attainment of the various outcomes in this course.

- Prepare Power Point presentation/Seminars by the students on any recent technological developments in the relevant fields.
- Analyze circuit response to troubleshoot faults in the electronic circuits.
- Practice Multisim/Matlab to analyze circuit response.
- Micro projects can be an extension of any practical lab exercise to real time applications.
- Incorporate pair and group work activities to understand the concepts.

Text Books:

- 1) S. Salivahanan, N.Suresh Kumar-"Electronic Devices and Circuits",4th edition-2017,McGraw Hill Education.
- Robert L.Boylestad, Louis Nashelsky-"Electronic Devices and Circuits Theory",8th edition-2021, Shree Hari Publications.

Reference Books:

- 1) Dr.Albert Paul Malvino, David J. Bates-"Electronic Principles (ENGINEERING TECHNOLOGIES & THE TRADES) " 4th edition-2015,McGraw Hill Education.
- 2) Jacob Millman-"Millman's Electronic Devices and Circuits (SIE) ", 4th Edition-2010, McGraw Hill Education.
- 3) Jacob Millman, Christos Halkias-"Integrated Electronics", 2nd edition-2017,McGraw Hill Education.

WEB-BASED/ONLINE RESOURCES:

- NPTEL video lecture on Analog Electronic Circuits <u>https://archive.nptel.ac.in/courses/108/105/108105158/</u>
- NPTEL video lecture on Introduction to Electronic Circuits <u>https://archive.nptel.ac.in/courses/108/102/108102097/</u>

For Quiz / MCQ Questions:

- https://www.indiabix.com/
- https://www.sanfoundry.com/

List of Equipment's:

S. No	Name of Equipment	Quantity
1.	Regulated Power Supply	10
2.	Signal Generator 1MHz	4
3.	Dual trace CRO30MHz	5
4.	Digital Multimeter	10
5.	DC Voltmeter (Different Ranges)	15
6.	DC Ammeter (Different Ranges)	15
7.	Decade Resistance Box	1
8.	Decade Capacitance Box	1
9.	Decade Inductance Box	1
10	PC with simulation software	5

Introduction

Most of the Bio medical equipment's are designed with Electronic circuit to process the signal sensed by sensors or electrodes. Lab technician should be well-known with the sensors and bio electrodes. The signals picked up by sensors and electrodes need various processing to further use it. The students need practical knowledge to measure various parameters such as Temperature, pressure, Flow, etc. This subject gives practical exposure to the students about measurement of process variables and enables the students to learn the basic principles of different sensors and Electrodes and signal processing circuits.

Course Objectives

The objective of this course is to enable the student to

- 1. Discuss the working of various types of sensors like displacement sensors, motion sensors, proximity sensors, flow sensors, temperature sensors, pressure sensors etc.
- 2. Operational amplifiers and its specification, characteristics
- 3. Implement Operational Amplifiers in basic applications
- 4. Understanding of signal conditioning circuits like amplifier and filters.
- 5. Analyses of Digital to Analog converters and Analog to Digital converters.
- 6. Learn the concept of instrumentation amplifier, V to I and I to V converter.

Course Outcomes

On successful completion of this course, the student will be able to understand about the

- CO1: Construction and working of various types of Displacement sensors
- CO2: Construction and working of Force sensors
- CO3: Construction and working of various types of temperature sensors
- CO4: Construction and working of various types of light sensors
- CO5: Construction and working of various types' amplifiers (inverting, non-inverting, Instrumentation amplifier) and filters using operational amplifiers and DAC Converters.

Pre-requisites

Knowledge about working of basic Electronic components.

CO/PO Mapping

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	3	2	2	3	1	1	3
CO2	3	2	2	3	1	1	3
CO3	3	2	2	3	1	1	3
CO4	3	2	2	3	1	1	3
CO5	3	2	2	3	1	1	3

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation

Instructional Strategy

- It is advised that teachers take steps to stimulate pupils' attention and boost their learning confidence.
- To help students learn and appreciate numerous concepts and principles in each area, teachers should provide examples from daily life, realistic situations, and real-world engineering and technological applications.
- The demonstration can make the subject exciting and foster in the students a scientific mindset. Student activities should be planned on all the topics.
- Throughout the course, a theory-demonstrate-practice-activity strategy may be used to ensure that learning is outcome- and employability-based.
- Do not let students work on an activity or an experiment with the expected outcome, rather allow students to be honest about whatever the results of the experiment are. If the results are different from the expectations, students should do an analysis where they could be the source of error, if any.

Assessment Methodology

	C	ontinuous Asses	ks)	Fnd Semester			
	CA1	CA2	C	43	Examination (60 Marks)		
Mode	Assignment	Record Writing	Written Practical Examination Examination		Written Examination	Practical Examination	
Duration	-	-	1 Hour	2 Hours	1 Hour	2 Hours	
Exam Marks	20	10	20	80	20	80	
Converted to	10	10		20	60		
Marks		4	6	0			

Note:

• CA 3 Model Examination shall be conducted similar to End Semester Examination which comprises of 100 Marks in which 80 Marks are allocated for Practical and 20 Marks are allocated for Theory Question pattern:

Allocation of Marks for End Semester Board Practical Examination and Model Practical Examination

Practical part (All Experiments)

Part	Description	Marks			
A	Circuit Diagram	35			
B Procedure/Algorithm					
С	C Connections/Execution				
D	Output/Result	10			
Е	Viva voce	5			
TOTAL MARKS					

Model Examination /End Semester Examination						
Part	Description	Marks				
Theory	10 Questions to be answered out of 15 Questions, Each Question carries 2 Marks(10Q X 2=20 Marks)	20				
Practical	As per Allocation of marks in Practical Part	80				
	Total	100				

1146233640 Practicum				Т	Р	С		
			SENSOR AND SIGNAL CONDITIONING	2	0	4	4	
Unit I	D	ISI	PLACEMENT, PROXIMITY AND FORCE SENSOR					
Sensors and Transducers – Definition Displacement Sensor - Potentiometer, strain gauged element, Capacitive element, LVDT Proximity Sensor - Eddy current proximity sensor, Inductive proximity sensor, proximity switches Force Sensor - strain gauge Load cell							6	
Ex. No	Name of the Experiment							
1	Conduct experiment to measure the displacement using potentiometer							
2	Condu	ict	experiment to measure the displacement using LVDT			1	2	
3	Condu	ict	experiment to measure the force using strain gauge load cell					
Unit II	T	EN	IPERATURE, PRESSURE AND LIGHT SENSORS					
Tempera Thermis Pressure Light set	Temperature sensor - Bimetallic strips –Resistance temperature detectors(RTD)– Thermistor-Thermo-diodes and transistors Pressure sensors-Diaphragm pressure gauge, capsules, Bellows, piezoelectric sensor Light sensors –Photodiodes ,Photo resistors, LDR				-	6		
Ex. No	Name of the Experiment							
4	Conduct experiment to measure the temperature using Thermistor							
5	Condu	ict	experiment to measure the temperature using RTD					
Unit III BIO ELECTRODES AND BIO SENSORS								

Bio Elec ECG El Electrod Electrica Bio Sen Smart se	trodes-Origin of Bio-Electric signal–Bio potential - Resting and Action potential, ectrodes–EEG Electrodes–EMG Electrodes- Recording Electrodes- types of es- Micro- skin and Needle electrodes - Silver-Silver chloride electrodes- l conductivity of Electrode jellies and creams sors- Transducers for body temperature measurement–Photoelectric transducer– nsors	6			
Ex. No	Name of the Experiment				
6	Conduct experiment to measure light intensity using LDR	12			
7	Conduct experiment to measure the body temperature	12			
Unit IV	OPERATIONAL AMPLIFIERS				
Operation diagram Basic cir	perational amplifier IC 741-Schematic symbol for opamp-pin diagram of IC 741-Block iagram of an opamp- Characteristics of an ideal opamp-CMRR-Slew Rate. asic circuits-Inverting Amplifier, Non Inverting Amplifier, Instrumentational Amplifier				
Ex. No	Name of the Experiment				
8	Construct and test the performance of Inverting and Non-inverting amplifier using operational amplifier with waveforms for input and output signals				
9	Construct the instrumentation amplifier circuit and test it	12			
Unit V	SIGNAL CONDITIONING CIRCUITS USING OP-AMP				
comparator – Zero crossing detector- Differential Amplifier- ECG amplifier Adder– subtractor-Integrator–Differentiator-Voltage to current converter-Current to voltage converter- low pass filter-High pass filter Band pass filter –Notch filter- Non-inverting Schmitt trigger-Inverting Schmitt trigger- Digital to analog converter					
Ex. No	Name of the Experiment				
10	Construct V to I and I to V converter circuit using operational amplifier				
11	Construct Low pass, High pass and Notch filter using operational amplifier and test it	12			
12	Construct R- 2R digital to analog converter circuit using operational amplifier and test it				
	Total Hours	90			

Suggested List of Students Activity

- https://www.vlab.co.in/broad-area-biotechnology-and-biomedical-engineering
- <u>https://ndl.iitkgp.ac.in</u>
- Check the web portal to study different types of sensors and transducers.
- Periodic class quizzes conducted on weekly based on the course

• Students might be asked to see the demonstration video of various sensors and transducer in YouTube and other online source

Text Book:

- 1. Hand book of Bio-Medical instrumentation- Third Edition, Dr.R.S.Khandpur, McGraw Hill Education (India)Private Limited
- 2. Dr.M.Arumugam–Biomedical Instrumentation, Anuradha publications, Chennai.
- 3. Linear Integrated Circuits, Second Edition, D.Roy Choudhury, New age international publishers

Reference Books

- 1. Leslie Cromwell–Fredj. Wibell, Erich A.P Feither–Biomedical Instrumentation and measurements, II Edition.
- 2. Medical Electronics- Kumaradoss
- 3. Introduction to Medical Electronics. B.R.Klin
- 4. Introduction to Biomedical Instrumentation Mandeep Singh Printice HallIndia2010

List of Equipment required

S. No	NAMÉ OF THE EQUIPMENT	QUANTITY REQUIRED						
1.	Potentiometer	4						
2.	LVDT	2						
3.	Strain gauge Load cell	2						
4.	Thermistor, RTD, LDR	Each 2						
5.	Analog IC trainer board with bread board and power supply	4						
6.	IC741,Resistors, capacitors	As required						
7.	Digital Multimeter	5						
8.	Cathode ray oscilloscope	4						
9.	Function generator	4						
10.	Connecting wires	As required						

Introduction

This course introduces the bio-materials that are compatible with the human body. Artificial organ developments are important in this scientific world. Hence, it becomes necessary to learn the materials involved in the development of these organs.

Course Objectives

The objective of this course is to enable the student to imparting the knowledge of material science, chemistry and characteristics and classification of biomaterials. It is useful to learn about different metals and ceramics used as biomaterials, polymeric materials and combinations for mechanism of tissue replacement implants and also gives knowledge of the artificial organ development.

Course Outcomes

On successful completion of this course, the student will be able to

CO1: Identify and classify the different type of biomaterials in the field of biomedical engineering.

CO2: Apply recent trends of different biomaterials in drug delivery systems

CO3: Develop a polymeric materials and combinations for implanting materials.

CO4: Understand the concepts of different dental implants.

CO5: Design tissues for replacement of organ.

Pre-requisites NIL

CO/PO Mapping

CO / PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	1	3	2	-	-	-	-
CO2	-		3	-	2	-	-
CO3	-	-	3	-	3	-	-
CO4	1	1	-	-	-	-	-
CO5	-	-	3	3	-	-	-

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation

Instructional Strategy

DIRECTORATE OF TECHNICAL EDUCATION, CHENNAI – 600 025 2023 REGULATION

- Engage and Motivate: Instructors should actively engage students to boost their learning confidence.
- Real-World Relevance: Incorporate relatable, real-life examples and applications to help students understand and appreciate course concepts.
- Interactive Learning: Utilize demonstrations and plan interactive student activities for an engaging learning experience.
- Application-Based Learning: Employ a theory-demonstrate-practice-activity strategy for the applicable topics to ensure outcome-driven learning and employability.

-

Assessment Methodology

		End Semester							
	CA1	CA2	CA3	CA4	(60 Marks)				
Model	Written Unit I & II (at the end of 6 th week)	Written Unit III & IV (at the end of 12 th week)	Written Model Exam Units I to V	Quiz/MCQ/ Activity/ Assignment	Written Examination				
Duration	2 hours	2 hours	3 hours	2 hours	3 hours				
Exam Marks	60	60	100	100	100				
Converted to	20	20	10	10	60				
Marks	20		2	60					

Note:

- CA1 and CA2 Assessment test should be conducted as per the question pattern. Best of one will be considered for 20 Marks.
- CA3 Model examination should be conducted as per the question pattern.
- CA4 Online quiz examination (MCQ) should be conducted covering the complete syllabus.

Question pattern:

CA1 & CA2 Assessment						
Part	Description	Marks				
А	16 Questions to be answered out of 20 Questions	16Q X 2 = 32 Marks(Each				
		question carries 2 marks)				
В	4 Questions to be answered out of 6 Questions	4QX 7 = 28 Marks (Each				
		question carries 7 Marks)				
	CA3 Assessment					
Part	Description	Marks				
А	15 Questions to be answered out of 20 Questions	15Q X 2 = 30 Marks(Each				
		question carries 2 marks)				
В	Answer all 5 questions, choosing any 2 sub-	(5Q X 14 =70 Marks)(7+7)				
	divisions out of 3 from each question under					
	Part –B.					

1146234110		BIO-MATERIAI S AND ARTIFICIAL ORGANS	L	Т	Р	C
Theo	ory	DIO-MATERIALS AND ARTIFICIAL ORGANS	3	0	0	3
Unit I	STRUC	FURE OF BIO-MATERIALS AND BIO-COMPATIB	ILIT	Y		
Definition Wound hea	and class ling proce	ification of biomaterials, Mechanical properties, Visco ss, Body response to implants, Blood compatibility	pelast	icity,		9
Unit II IMPLANT MATERIALS						
Metallic implant materials, Stainless steels, Co-based alloys, Ti-based alloys, Ceramic implant materials, Aluminum oxides, Hydroxyapatite, Glass ceramics, Carbons, Medical applications.						9
Unit III POLYMERIC IMPLANT MATERIALS						
Polymerization, Polyamides, Acryrilic polymers, Rubbers, High strength thermoplastics, Medical applications, Biopolymers - collagen and elastin; Medical textiles silica, Chitosan, PLA composites, Sutures, Wound dressings; Materials for ophthalmology - contact lens, intraocular lens, membranes for plasma separation and blood oxygenation						9
Unit IV	TISSUE	REPLACEMENT IMPLANTS				
Small intestinal submucosa and other decellarized matrix biomaterials for tissue repair; Soft tissue replacements, Sutures, Surgical tapes, Adhesive, Percutaneous and skin implants, Maxillofacial augmentation, Vascular grafts, Hard tissue replacement Implants, Joint replacements, Pancreas replacement						9
Unit V	ARTIFI	CIAL ORGANS				
Artificial b lung (oxyg implants	lood, Artif genator), A	ficial skin, Artificial heart, Prosthetic cardiac valves, Artifi Artificial kidney (Dialyser membrane), Artificial pancrea	icial as, D	ental		9
		TOTAL HOURS			4	45

Suggested List of Students Activity

- Presentation/Seminars by students on any recent technological developments based on the course.
- Periodic class/online quizzes conducted based on the course.
- Blended learning activities to explore the recent trends and developments in the field.

Reference

- Joseph D. Bronzino,"The Biomedical Engineering Hand Book, 2nd Edition Boca Raton: CRC Press LLC, 2000.
- 2. Sujata V. Bhatt, "Biomaterials", 2nd edition, Narosa Publishing House, 2005
- 3. Park J.B., "Biomaterials Science and Engineering", 1st edition, Plenum Press, 1984.
- Myer Kutz, "Standard Handbook of Biomedical Engineering and Design", Mc Graw Hill, 2003.
- John Enderle, Joseph D. Bronzino, Susan M.Blanchard, "Introduction to Biomedical Engineering", 2nd edition, Elsevier, 2005.
- 6. A.C Anand, J F Kennedy, M.Miraftab, S.Rajendran, "Woodhead Medical Textiles and Biomaterials for Healthcare", 2nd edition, Publishing Limited, 2006.
- D F Williams, "Materials Science and Technology: Vol 14, Medical and Dental Materials: A comprehensive Treatment Volume", VCH Publishers, 1992.
- B D Ratner, AS Hoffmann, FJ Schoen and JE Lemmons, "An introduction to Materials in Medicine", Academic Press, 1996.

Web Resources

1. https://onlinecourses.nptel.ac.in/noc19_mm24/preview

Introduction

An operational amplifier is an integrated circuit that can amplify weak electric signals. An operational amplifier is not normally used alone but is designed to be connected to other circuits to perform a great variety of operations.

Op-amps usually have high open-loop gain, and differential inputs are used most in the medical area, especially in the monitoring area, which can use the characteristic of the op-amps to magnify the signal from biology signals and increase it for better monitoring.

Basically all medical equipment that uses sensors will use Op Amps to amplify and condition the signals that the sensors pick up. In medical devices and equipment, op-amps may be used in various ways, such as in signal conditioning, filtering, and amplification within electronic medical instruments. This includes EKGs, ECGs, pulse and BP monitors, temperature monitors, etc. Op-amps help process and amplify the small electrical signals generated by the body for further analysis and diagnosis.

In addition, chemistry analyzers and blood counters that are used to perform tests on blood and urine use Op Amps to perform the tests themselves.

Hence an in-depth knowledge of the operation and application of Operational Amplifier and Linear Integrated Circuits is essential for Biomedical Electronics.

Course Objectives

At the end of the course, the students would be able to

- study in detail constructional & basic operational aspects of various analog and Digital electronic devices used in industry.
- study in detail the concepts of ICs Like op-amp, 555 Timer IC, Voltage Regulator ICs, Multiplier ICs, ADC-DAC etc.
- focus on the application of Integrated circuits for practical designing aspects.
- aware the applications of different digital devices for designing the different type of circuits.

Course Outcomes

After successful completion of this course, the student will be able to

- CO1: have a thorough understanding of IC fabrication techniques and advantages of ICs over discrete components.
- CO2: comprehend the operational features of Operational Amplifiers
- CO3: describe the working of various applications of Operational Amplifiers interpret the working of analog multipliers and PLLs
- CO4: understand the working and applications of ADC and DAC
- CO5: illustrate the working of wave form generators and special function ICs
- CO6: engage in self-study to demonstrate the various applications of Operational Amplifiers.

Pre-requisites

Basic Electronics

	r8						
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	3	1	2	2	1	2	3
CO2	2	1		2	3	1	2
CO3	3	1\	2	3	1	2	3
CO4	1	3		1	2	3	2
CO5	2	1	2	3	2	1	1

CO/PO Mapping

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation

Instructional Strategy

- Teachers have to use different teaching methods for easy understanding.
- Teachers have to explore the various simulation methods to explain the operation of Operational Amplifiers and its applications.
- Teachers have to encourage the students to visit various online resources on Operational Amplifiers.

- Teachers have to motivate the students to explore various MOOC courses on Operational Amplfiers.
- Teachers have to illustate the application of Operational Amplifiers as building blocks in various Bio-Medical Applications.
- Teachers have to arrange industrial visits on circuit designing and fabrication.

Assessment Methodology:

		End Semester			
	CA1	CA2	CA3	CA4	(60 Marks)
Model	Written Unit I & II	Written Unit III & IV	Written Model Exam	Quiz/MCQ/ Activity/	Written
	(at the end of 6 th week)	(at the end of 12 th week)	Units I to V	Assignment	Examination
Duration	2 hours	2 hours	3 hours	2 hours	3 hours
Exam Marks	60	60	100	100	100
Converted to	20	20	10	10	60
Marks		20	2	0	60

Note:

- CA1 and CA2 Assessment test should be conducted as per the question pattern. Best of one will be considered for 20 Marks.
- CA3 Model examination should be conducted as per the question pattern.
- CA4 Online quiz examination (MCQ) should be conducted covering the complete syllabus.

L	Т	Р	С
3	0	0	3

Question pattern:

CA1 & CA2 Assessment						
Part	Description	Marks				
A	16 Questions to be answered out of 20	16Q X 2 = 32 Marks(Each				
	Questions	question carries 2 marks)				
В	4 Questions to be answered out of 6 Questions	4QX 7 = 28 Marks (Each				
	-	question carries 7 Marks)				
	CA3 Assessment					
Part	Description	Marks				
А	15 Questions to be answered out of 20	15Q X 2 = 30 Marks(Each				
	Questions	question carries 2 marks)				
В	Answer all 5 questions, choosing any 2 sub-	(5Q X 14 =70 Marks)(7+7)				
	divisions out of 3 from each question under					
	Part –B.					

1146234210	- Operational Amplifier and Linear Integrated Circuits		Т	Р	С	
Theory	Operational Ampliner and Linear Integrated Circuits	3	0	0	3	
Unit I IC F	Sabrication and Circuit Configuration for Linear Integrat	ed C	ircui	t		
Advantages of ICs	over discrete components - Manufacturing process of mono	lithic	: IC's	5,		
Construction of m	onolithic bipolar transistor – Monolithic diodes – Integrated	l Res	istors	5,		
Monolithic Capaci	tors - Inductors. Current mirror and current sources, Current	sour	ces a	s	_	
active loads, Voltage sources, Voltage References, BJT Differential amplifier with active						
loads, General operational amplifier stages -and internal circuit diagrams of IC 741, DC						
and AC performan	ce characteristics, slew rate, Open and closed loop configurat	tions				
Unit II App	lication of Operational Amplifiers					
Applications of C	Operational Amplifiers: Sign Changer, Scale Changer, P	hase	Shif	Ìt		
Circuits, Voltage	e Follower, V-to-I and I-to-V converters, adder,	subt	ractor	;		
Instrumentation	amplifier, Integrator, Differentiator, Logarithmic	amp	olifier	;	9	
Antilogarithmic a	amplifier, Comparators, Schmitt trigger, Precision recti	fier,	peal	k		
detector, clipper ar	nd clamper, Low-pass, high-pass and band-pass Butterworth f	filters	5.			
Unit III Ana	log Multiplier and PLL					
Analog Multiplier	using Emitter Coupled Transistor Pair - Gilbert Multip	lier	cell -	-	0	
Variable transcon	ductance technique, analog multiplier ICs and their ap	oplica	ations	,	9	

Operation of the basic PLL, Closed loop analysis, Voltage controlled oscillator, Monolithic PLL IC 565, application of PLL for AM detection, FM detection, FSK modulation and demodulation and Frequency synthesizing.

Analog and Digital Data Conversions, D/A converter - specifications - weighted resistor	
type, R-2R Ladder type, Voltage Mode and Current-Mode R2R Ladder types switches for	
D/A converters, high speed sample-and-hold circuits, A/D Converters specifications -	9
Flash type - Successive Approximation type - Single Slope type - Dual Slope type - A/D	
Converter using Voltage-to- Time Conversion - Over-sampling A/D Converters.	

Unit V	Waveform	Generators and	Special Function	ICs

Sine-wave generators, Multivibrators and Triangular wave generator, Saw-tooth wave	
generator, ICL 8038 function generator, Timer IC 555, IC Voltage regulators - Three	
terminal fixed and adjust- able voltage regulators - IC 723 general purpose regulator	
Monolithic switching regulator, Switched 46 capacitor filter IC MF10, Frequency to	9
Voltage and Voltage to Frequency converters, Audio Power amplifier, Video Amplifier,	
Isolation Amplifier, Opto-couplers and fibre optic IC.	

TOTAL HOURS

Reference Books

- Integrated Electronics by Millman & Halkias, Tata McGraw Hill
- Design with Operational Amplifiers and Analog Integrated Circuits, Tata McGraw Hill
- Electronic Circuit, Discrete & Integrated by Schilling & Belove,, Tata McGraw Hill
- Operational Amplifiers and Linear Integrated Circuits by Gayakwad R A, Pearson
- Operational Amplifier and Linear Integrated Circuits by Coughlin and Driscoll, Pearson Education Asia.
- Design with Oerational Amplifiers and Analog Integrated Circuits (3/e), Sergio Franco, Tata McGraw-Hill, 2007
- Linear Integrated Circuits by D Roy Choudhry, Shail Jain New Age International
- System design using Integrated Circuits (2/e) by B S Sonde, New Age Publishers
- Analysis and Design of Analog Integrated Circuits by Gray and Meyer, Wiley International Operational Amplifier and Linear Integrated Circuits by K Lal Kishore, Pearson Education

Introduction

Introduces the core concepts and basic principles in microbiology, examining microorganisms and how they interact with humans and the environment. Demonstrate the knowledge and skills in the common microbiology laboratory procedures. The scope on this field is immense due to the involvement and microbiology in many fields like medicine, pharmacy, industry clinical research, Nano technology etc.

Course Objectives

The objective of this course is to enable the student to

- 1. Get acquainted to the laboratory precautions and techniques to be followed in general microbiology laboratory.
- 2. Identify microorganisms microscopically.
- 3. Train the students in culturing techniques.
- 4. Acquire skills to isolate and quantify microorganisms

Course Outcomes

On successful completion of this course, the student will be able to

- CO1: Understand basic microbiology, various micro-organisms and working of microscope.
- CO2: Identify characteristics of various microorganisms and its growth.
- CO3: Analyse culturing techniques.
- CO4: Understand Immunology and blood grouping.
- CO5: Understand microbial growth within a laboratory

Pre-requisites

Knowledge of basic science

1146234340	L	т	Ρ	С
Practicum	1	0	4	3

CO/PO Mapping

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	3	1	2	1	-	-	2
CO2	2	3	1	2	1	1	2
CO3	2	2	3	1	2	1	-
CO4	2	1	2	3	1	1	-
CO5	-	-	3	2	3	1	2

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation

Instructional Strategy

- It is advised that teachers take steps to stimulate pupils' attention and boost their learning confidence.
- To help students learn and appreciate numerous concepts and principles in each area, teachers should provide examples from daily life, realistic situations, and real-world engineering and technological applications.
- The demonstration can make the subject exciting and foster in the students a scientific mindset. Student activities should be planned on all the topics.
- Throughout the course, a theory-demonstrate-practice-activity strategy may be used to ensure that learning is outcome- and employability-based.
- Do not let students work on an activity or an experiment with the expected outcome, rather allow students to be honest about whatever the results of the experiment are. If the results are different from the expectations, students should do an analysis where they could be the source of error, if any

1146234340		L	т	Ρ	С
Practicum	MICKOBIOLOGI	1	0	4	3

Assessment Methodology

	(Continuous Ass	sessment (40 mar	ks)	End Semester Examination (60 Marks)		
	CA1	CA2	C.	A3			
Mode	Assignment	Record Writing	Written Practical Examination Examination		Written Examination	Practical Examination	
Duration	-	-	1 Hour	2 Hours	1 Hour	2 Hours	
Exam Marks	20	10	20	80	20	80	
Converted to	10	10	20 60		0		
Marks			40		6	0	

Note:

• CA 3 Model Examination shall be conducted similar to End Semester Examination which comprises of 100 Marks in which **80 Marks are allocated for Practical** and **20 Marks are allocated for Theory**.

Allocation of Marks for End Semester Board Practical Examination and Model Practical Examination

Practical part (All Experiments)

Part	Description	Marks
А	Circuit Diagram	35
В	Procedure/Algorithm	10
С	Connections/Execution	20
D	Output/Result	10
Е	Viva voce	5
	80	

1146234340		L	т	Ρ	С
Practicum	MICKOBIOLOGI	1	0	4	3

Model Examination /End Semester Examination					
Part	Description	Marks			
Theory	10 Questions to be answered out of 15 Questions, Each Question carries 2 Marks(10Q X 2=20 Marks)	20			
Practical	As per Allocation of marks in Practical Part	80 100			

114623	4340	MICROBIOLOGY	L	Т	Ρ	С		
Practi	cum		1	0	4	3		
Unit I	Basics	of microbiology						
Theory History an	d Scope	of Microbiology, Prokaryotic and Eukaryotic Microc	organ	isms.				
Classification of MicroorganismsMorphology and General Characteristics of Bacteria								
Fungus, Algae &Virus								
Practical								
Experiment #1: Safety measures and Good Laboratory Practices in microbiology								
	Labor	ratory.						
Experimen	t #2: Intro	oduction, operation, precautions and use of common micro	biolo	gу]	12		
	labo	ratory instruments: Incubator, pH meter, Hot air oven, Au	toclav	ve,				
Colorimeter, Laminar air flow hood, Clinical centrifuge.								
Unit II Microscope and culture media								
Theory Microscope	e - Princip	les, working Mechanism and Application - Simple and C	Comp	ound				
Microscope	e					2		
Culture me	dia prepar	ation - Types of media - Pure culture techniques				3		
Anti-micro	bial susce	ptibility testing–Modified Kirby-Bauemethod						

DIRECTORATE OF TECHNICAL EDUCATION, CHENNAI – 600 025 2023 REGULATION

146234340			Т	Ρ		
Practicum		1	0	4		
Dreatical						
Experiment #	3: Microscopic examination of – Bacteria, Fungi and Protozoa.					
Experiment #	ent #4: Culture media preparation – Liquid and Solid medium				2	
Experiment #5: Motility of bacteria by -Hanging drop method						
Experiment #	6: Antimicrobial susceptibility testing–Modified Kirby-Bauer r	netho	d			
Unit III	Staining Methods					
Theory Staining method – simple staining, differential staining – Gram's staining, Zileh-Neelsen staining (Hot and Cold). Albert staining, Nagative staining, India iak propagation						
Practical Experiment #7: Simple staining–Methylene blue staining Experiment #8: Grams Staining Experiment #9: Acid fast staining					12	
Unit IV	mmunology					
Theory Immune Cell and functions	s - Immune Hematology, Blood grouping, Properties of Antigers of Immunoglobulin.	n – St	ructure	3		
Practical Experiment #10: Motility of bacteria-Hanging drop preparation Experiment #11: Blood Collection and grouping Experiment #12: Counting of BBCs and WBCs through microscope					2	
Unit V I	Morphology			_		
Theory Morphology, preventive m	Pathogenicity, symptoms, laboratory diagnosis, treatment easures of E.coli, Mycobacterium tuberculosis, Salmonella typh	, con ni.	trol &	3	,	
Practical Experiment # Experiment #	13: Identification of pathogenic microorganisms by using high 14: Water quality test by Most Propable Number method(MPN	n medi	ium	12	2	
	TOTAL HOURS			7!	5	

Reference

- Pelezar TR M J chan ECS and Kreig NR" "Microbiology", Fifth edition, TataMc Graw-Hill INC. New York (2006).
- "Anathanarayan R and Jayaram Paniker CK" "Text book of Microbiology", Seventh edition, Orient Longmam Limited, Hyderabad (2005).
- "Dubey RC and Maheswari DK" "A text of microbiology", Revised edition, S.Chand and Company Ltd., New Delhi (2012).
- "Dubey RC and Maheswari DK" "A text of microbiology", Revised edition, S.Chand and Company

1146234340	L	т	Ρ	С
Practicum	1	0	4	3

Ltd., New Delhi (2012).

Web-based/Online Resources

- https://mvi-au.vlabs.ac.in/#
- <u>https://onlinecourses.swayam2.ac.in/cec24_bt03/preview</u>
- https://microbiologysociety.org/static/uploaded/23cbf9c5-f8c8-4f91-b092a4ad819e6357.pdf

List of Equipments

S. No	Name of Equipments	Quantity
1	Auto clave	1
2	Hot air oven	1
3	Microscope	10
4	Weighing balance(Digital)	1
5	Media for Culture	
6	Test tubes	50
7	Test tube rack	25
8	Beakers	10
9	Conical flask	10
10	Petridishes	50
11	Measuring cylinder	5
12	Incubator	1
13	Staining Rack	1
14	Spreader rod	1
15	Glass rod	10
16	Glass slides	50
17	All the stains	
18	Colony counter	1
19	Slide box	2

Introduction

A microcontroller is an electronic device belonging to the microcomputer family. These are fabricated using the VLSI (Very Large Scale Integration) technology on a single chip. Microcontroller is also known as "Computer-on-a-Chip". It is named so, because not only the CPU, but RAM, ROM, I/O ports, Timer/ Counter, Serial I/Os all are put together on a single microcontroller chip. A microcontroller also called an embedded controller because the microcontroller and its support circuits are often built into, or embedded in, the devices they control. A microcontroller is available in different word lengths like microprocessors(4bit, 8bit, 16bit, 32bit, 64bit, 128bit microcontrollers are available today).

Course Objectives

On completion of the following units of syllabus contents, the students must be able to

- Explain the Architecture of 8051 Microcontroller.
- Explain the functions of various registers.
- Understand the interrupt structure of 8051.
- Understand the serial data communication concepts.
- Understand the programming techniques.
- Explain various addressing modes.
- Write simple programs using 8051.
- Understand the block diagrams and control word formats for peripheral devices.
- Understand how to interface with RS232C.
- Understand how to interface with 8255.
- Understand various application of 8051 Microcontroller.

Course Outcomes

On successful completion of this course, the student will be able to understand about the

- CO1: Design the architecture of 8051 Microcontroller
- CO2: Learn about the Assembly language programs of 8051
- CO3: Explain the peripherals on Input out ports and Timer
- CO4: Explain the serial communication and interrupts
- CO5: Realize how to interface with 8255

L	Т	Р	С
1	0	4	3

CO/PO Mapping

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	3	2	2	3	1	1	3
CO2	3	2	2	3	1	1	3
CO3	3	2	2	3	1	1	3
CO4	3	2	2	3	1	1	3
CO5	3	2	2	3	1	1	3

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation

Instructional Strategy

- It is advised that teachers take steps to stimulate pupils' attention and boost their learning confidence.
- To help students learn and appreciate numerous concepts and principles in each area, teachers should provide examples from daily life, realistic situations, and real-world engineering and technological applications.
- The demonstration can make the subject exciting and foster in the students a scientific mindset. Student activities should be planned on all the topics.
- Throughout the course, a theory-demonstrate-practice-activity strategy may be used to ensure that learning is outcome- and employability-based.
- Do not let students work on an activity or an experiment with the expected outcome, rather allow students to be honest about whatever the results of the experiment are. If the results are different from the expectations, students should do an analysis where they could be the source of error, if any.

Assessment Methodology

	С	ontinuous Asses	ssment (40 marl	ks)	End Semester			
	CA1	CA2	Cz	43	Exami (60 M	nation Iarks)		
Mode	Assignment	Record Writing	Written Examination	Practical Examination	Written Examination	Practical Examination		
Duration	-	-	1 Hour	2 Hours	1 Hour	2 Hours		
Exam Marks	20	10	20	80	20	80		
Converted to	10	10	2	20	60			
Marks		4	0		6	0		
Note:								

• CA 3 Model Examination shall be conducted similar to End Semester Examination which comprises of 100 Marks in which **80 Marks are allocated for Practical** and **20 Marks are allocated for Theory Question pattern:**

Allocation of Marks for End Semester Board Practical Examination and Model Practical Examination Practical part (All Experiments)

Part	Description	Marks			
А	Circuit Diagram	35			
В	Procedure/Algorithm	10			
C	Connections/Execution	20			
D	Output/Result	10			
E	Viva voce	5			
	TOTAL MARKS				

L	Т	Р	С
1	0	4	3

Model Examination /End Semester Examination						
Part	Description	Marks				
Theory	10 Questions to be answered out of 15 Questions, Each Question carries 2 Marks(10Q X 2=20 Marks)	20				
Practical	As per Allocation of marks in Practical Part	80				
	Total 100					

1146234440					С	
	MICROCONTROLLER AND ITS APPLICATIONS					
Practicum					3	
UNIT - 1	ARCHITECTURE AND INSTRUCTION SET OF 8051	15 Hou		oui	ſS	
	MICROCONTROLLER					
1.1	Architecture: Architecture diagram of microcontroller 8051 - Functions of					
	each block - Pin details of 8051 – ALU –ROM – RAM					
1.2	Special function registers - Program counter - PSW register - Stack - I/O					
	ports – Timer – Interrupt - serial port					
			3 H	Irs	•	
1.3	Instruction Set of 8051 Instruction set of 8051 Classification of 8051 instructions data transfer					
	instruction set of 8031 - Classification of 8031 instructions - data transfer					
	instructions - Arithmetic instructions - Logical instructions - Branching	anching				
	instructions - Bit manipulation instructions.					
EX.NO.	NAME OF THE EXPERIMENTS					
1.	Write an assembly language program for adding two 8 bit / 16 bit numbers and					
	execute the sameusing 8051 trainer kit.		12 F	Irs	•	
2.	Write an assembly language program for subtraction two 8 bit / 16 bit numbers					
	and execute thesame using 8051 trainer kit.					
UNIT - 2	8051 INSTRUCTION SET AND PROGRAMMING	1	5 H	[ou	rs	
2.1	Assembler					
	Assembling and running an 8051 program - Structure of Assembly					
	language - Assembler directives -Different Addressing modes of 8051 -					
	Time delay routines.		зн	rs		
		1	~ 11			

DIRECTORATE OF TECHNICAL EDUCATION, CHENNAI – 600 025 2023 REGULATION

1146234440)

MICROCONTROLLER AND ITS APPLICATIONS

L	Т	Р	С
1	0	4	3

2.2	Assembly language programs	
	16 bit addition and 16 bit subtraction - 8 bit multiplication and 8 bit division -	
	BCD to HEX code conversion - HEX to BCD code conversion - Smallest	
	number / Biggest number	
EX.NO.	NAME OF THE EXPERIMENTS	
1.	Write an assembly language program for multiplication of two 8 bit numbers	
	and execute thesame using 8051 trainer kit.	
2.	Write an assembly language program for division of two 8 bit numbers and	12 Hrs.
	execute the sameusing 8051 trainer kit.	
3.	Write an Assembly Language Programme for BCD to Hex code Conversion and	
	execute using 8051kit.	
4.	Write an Assembly Language Programme for Hex to BCD code Conversion and	
	execute using 8051kit.	
UNIT - 3	I/O AND TIMER	15 Hours
3.1	I/O Ports	
	Bit addresses for I/O and RAM – I/O programming – I/O bit manipulation	
	programming.	3 Hrs.
3.2	Timer/Counter	
	SFRS for Timer - Modes of Timers/counters - Programming 8051.	
EX.NO.	NAME OF THE EXPERIMENTS	
1.	Write a 8051 Assembly language program to generate 1 second time delay using	
	Time delayroutine.(Demonstrate by blinking LEDs)	12 Hrs.
2.	Write a 8051 Assembly Language program to use Timer/ Counter of 8051	
	microcontroller togenerate time delay.	
UNIT - 4	SERIAL COMMUNICATION AND INTERRUPTS	15 Hours
	Serial Communication	
4.1	Basics of serial communication - SERs for serial communication - RS232	
	Dusies of serial communication birks for serial communication (15232	
	standard - 8051 connection to RS 232 - 8051 serial port programming.	3 Hrs

1146234440

Practicum

MICROCONTROLLER AND ITS APPLICATIONS

L	Т	Р	С
1	0	4	3

	Interrupts	
4.2	8051 interrupts - SFRs for interrupt - Interrupt priority.	
EX.NO.	NAME OF THE EXPERIMENTS	
1	Write a program to perform serial communication between two 8051 microcontroller kits and verify the output.	12 Hrs.
UNIT - 5	INTERFACING TECHNIQUES	15 Hours
5.1	IC 8255	
	IC 8255 - Block diagram - Modes of 8255 - 8051 interfacing with 8255	3 Hrs
5.2	Interfacing	
	Seven segments LED display interfacing - Stepper motor interfacing - DAC	
	interfacing - DC motor -Interfacing using PWM	
EX.NO.	NAME OF THE EXPERIMENTS	
1	Write a program to interface Digital I/O board with microcontroller 8051.	
2	Write a program to interface DAC interface board with microcontroller 8051.	12 Hrs
3	Write a program to interface stepper motor with microcontroller 8051.	
4	Write a program to interface seven segment LED interface with microcontroller	
	8051.	
5	Write a program to interface a DC motor with microcontroller and verify the	
	rotation of motor in both directions using PWM method	
	Total Hours	75 hrs

	TEXT BOOK							
		ILAI DOOK						
S. No	Title	Author	Publisher	Year of Publishing /Edition				
1.	Microcontrollers - Principleand Applications	Ajit pal	Prentice Hall of India	2011/15 th Edition				

	1146234440		MICROCONTE	CONTROLLER AND ITS APPLICATIONS		L	Т	Р	С	
Practicum				MICKOCONTROLLER AND ITS ATTENCATIONS			0	4	3	
2		Microproc Microcont	essor and roller	R.Theagarajan	Sci Tech Publication		20)11/1 st	^t Editio	on
3		Microproc Architectu and Applic 8085	essor re, Programming cations with the	Ramesh S.Goankar	Prentice Hall of India		20	002/5 st	^t Editio	on
		0000								

REFERENCE BOOKS							
S.no	Title	Author	Publisher	Year of publishing / Edition			
1.	8051 Microcontroller and	Muhammed Ali	Pearson				
	Embedded Systems using	Mazidi, Janice Gillispe	Education	2007/2 nd Edition			
	Assembly and C	Mazidi and D.MacKinlay	Low Price Edition				
2.	Microprocessor and			e e e e vist — e e			
	Microcontrollers based	Mohammed	Universal	2002/1 st Edition			
	system design	Rafiquzzman	Bookstall				

LIST OF PROPOSED STUDENT ACTIVITIES

REFERENCE LINKS					
Refer Web link :	Refer Web link :				
https://www.youtube.com/watch?v=qTZaE2lcYTo for	https://www.youtube.com/watch?v=5kdK8f2ObVUfo				
I/O Ports	r instruction set of 8051				
Refer Web link :	Refer Web link :				
https://www.youtube.com/watch?v=smh6jDORknU for	https://www.youtube.com/watch?v=huI5N02AHKMf				
Assembler Directives	or				
	ASCII to Binary Conversion				
Refer Web link :	Refer Web link :				
https://www.youtube.com/watch?v=WCjWIRdYNmI	https://www.youtube.com/watch?v=0SZPr4iGA				
forTIMER	C for Programming 8051 Timer				

	1146234440	MICROCONTROLLER AND ITS APPLICATIONS		L	Т	Р	С	
	Practicum			1	0	4	3	
Refer Web link :		Refer Web link :						
https://www.youtube.com/watch?v=oIt-8XQxWKI for		https://www.youtube.com/watch?v=nuGsQBlbx6						
serial communication			Mfor8051 interrupts					
Refer Web link :		Refer Web link :						
https://www.youtube.com/watch?v=QgcGmKt4jXU for 8255 interface			https://www.youtube.com/watch?v=LlpQuaQEQ8					

A for Stepper Motor Interfacing

LIST OF EQUIPMENTS	

SI. No	Name of the item	Quantity				
1.	8051 Microcontroller Kit	14 Nos.				
2.	Digital I/O Interface Board	2 Nos.				
3.	Seven segment LED display Interface Board	2 Nos.				
4.	8 bit DAC Interface Board	2 Nos.				
5.	Stepper Motor Control Interface Board	2 Nos.				
6.	DC motor control Interface Board	2 Nos.				
7.	RS232 serial port cable	2 Nos.				

Introduction

Signals and Systems is an essential subject that forms the backbone of modern technology. It encompasses the study of how information is captured, manipulated, and transmitted in various systems. From audio and image processing to telecommunications and control systems, Signals and Systems underlies the design and analysis of a wide range of technologies that shape our world.

Course Objectives

- To introduce the students to the idea of signals and systems, their characteristics in time and frequency domain.
- To provide the basic knowledge on Fourier representation and Laplace transform and its applications on signals and systems.
- To impart foundations of Z-transforms and its applications on signals and systems.
- To familiarise the students to the concept of random signals and random inputs.

Course Outcomes

After successful completion of this course, the student will be able to

- CO1: Summarize the basic concepts, classfications and mathematical properties of signals.
- CO2: Classify and compare continuous and discrete time systems.
- CO3: Elucidate the various signal transformation techniques.
- CO3: Explain Fourier representation of signals.
- CO4: Explain Laplace, Inverse Laplace and Z-transforms.
- CO5: Understand the concept of random signals and its response to random inputs.

Pre-requisites

Differentiation and Integration.

